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Abstract Past  investigations of  membrane mirrors have  led  to  the  conclusion  that  they 
are  not  suitable for imaging in the visible. We  re-examine this conclusion  and discuss ways 
to circumvent  the  principal problems. A re-analysis of  1'Garde  measurements of a 6 um 
thick  membrane  mirror  corrects  earlier  interpretations of the  "W-curve"  asymmetry. 
Correction of the  classical Hencky aspheric  shape of  membrane  mirror is necessary  to 
upgrade  them for use in visible passbands. The theory of variable  membrane  thickness in a 
radial  direction is presented. A numerical  integration is done  and  a  unique  quadratic  radial 
variation of thickness found which corrects for the u4 Hencky  term. Two methods  to 
fabricate such a membrane are presented. 

Subject  terms:  space optics, inflatable  membrane mirrors, visible  passband  inflatable 
mirrOrS. 



1 Introduction 

Inflated  membrane mirrors consist of two thin  circular  membranes  that  are sealed on their 
periphery, attached  to  a  tensioning ring and  inflated to a pressure sufficient to produce the 
focal ratio  required  of  the mirror. Such inflated mirrors have  been  used for various 
applications  wherein low imaging  acuity is sufficient; for instance, microwave 
antennae1,23 and solar energy concentrators4~5. They were never contemplated for optical 
passband  imaging  where  high  acuity is required. The basic  problem is that the shape of an 
inflated  membrane is neither  spherical nor parabolic. The profile  of  such  a mirror has  an 
up-turned  periphery  with  regard to a sphere and  hence is an oblate spheroid. Its shape is 
generally  expressed  by an even power series termed  the Hencky curve, after the first 
person to explore such mirrors6. The resulting  spherical  aberration is serious and forms 
placing  a  secondary  mirror for a Cassegrain configuration far  from the prime focus,  as 
shown in Fig. 1 .  Hence an  unconventionally large secondary  mirror is required. With 
renewed  interest  in  the  possibility  of using inflation-deployed  optics7  in  space systems it  is 
appropriate to  re-examine  the issues surrounding the  use of inflatable optics. The challenge 
to transform  the  Hencky  curve into a  paraboloid  can  be  better  appreciated  by  comparing  it 
to a  paraboloid. For convenience of comparison one can  write the equations for a  Hencky 
surface, a  spherical surface and  a  paraboloid  in  similar form as: 
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The ma,pitude  of  the u4 terms show how  much downward warping of  the outer edge of a 
inflated  membrane  mirror is required even to reach  equality  with  a sphere, and still  more to 
reach  a  paraboloid. To reach  the surface shape for a  Ritchey-Chretien  primary the u4 term 
would  need  to  be  slightly  negative with respect  to  a paraboloid. 

When  a  paraboloid is subtracted from measurements of inflated  membranes  the  resulting 
curve has been  termed  a "W-curve." The published W-curves 8 9  9 7  10 usually have a  large 
asymmetry  that has been  interpreted as indicating an asymmetry in the  inflated shape of the 
membrane.  In  view  of  the  acceptance  of this asymmetry as being real it is important  to  re- 



analyze  the  original  measurements and apply  the  appropriate corrections for the metrology 
zero point. 

2 Re-analysis of the 1'Garde data 

Cassapakis" of 1'Garde has kindly provided us with the  measurement  data for a 900 mm 
diameter, 6 um thick  Mylar  membrane mirror having  a  central radius of curvature of 2070 
mm. The customary  way to present this data in  graphical form is to subtract  a  best  fit 
parabolic curve, which results in  the "W-curve." Occasionally curves are shown to have 
the  exact  reverse, an "M-curve." This in all  probability  reflects whether a  paraboloid is 
subtracted from the  measured  curve or vice  versa. Two examples showing this asymmetry 
are shown in Fig. 2. We have  added  a straight, but tilted,  line  tangent  to  the  minima of 
these  W-curves. This tilt is familiar to opticists as being  an  artifact  caused by a  small error 
in  the  zero-point  of  the  metrology system, producing an error generally  termed "coma." 

The  data  provided  to us did  not show this large  an asymmetry, as shown in Fig. 3, and 
was  corrected by a  small shift in the  r and z coordinates of the data. The sagitta vs. radial 
zone is shown with  respect to a paraboloid. In Fig. 4 we  show data for the 6 um  Mylar 
membme mirror, The sagitta vs. radial  zone is shown at the top and the difference with 
respect to a  paraboloid at the  bottom. A line  fitted through the points for the  difference 
curve  when  superimposed  but  reversed shows a difference for the outer five data points. 

To further explore  potential differences in  symmetry of the  inflated  membrane  we 
compared  the  1'Garde data for two  orthogonal azimuths across the  mirror. Fig. 5 (top) 
shows the slopes vs radial  zone.  In Fig. 5 (bottom)  we  have  subtracted  the  parabolic  slope 
so that  the  residual shows only  the  third power and higher terms. 

3 Analysis 

To understand  the  above results we have taken  the  plotted  data, formed its mirror image 
and  superimposed  the  resulting  two curves. In Fig. 6 we  show  the  result for an  azimuth 
across the  mirror surface. The superimposed curves show  excellent  a,pement  between  the 
curves on both sides of center  to  the scale of  the drawing in Fig. 6.  The difference  between 
the two curves is 7 um rms, as shown at larger  scale  in Fig. 6 (bottom). A major  part of 
this difference is due to terms in u 6 ,  us . . . not  included  in  the Hencky equation. 
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We  next  examined  the curve data for an azimuth in  the  transverse  direction.  In Fig. 7 we 
show  the  measured  membrane  sagitta minus the  same  parabolic  curve for the cuts in 
orthogonal  directions. The direct + reversed superimposed  curves a,pe excellently 
showing symmetry  in  each  direction: however, the orthogonal  azimuths are different as  is 
shown in Fig. 7. 

This difference  means  that  the  oblate  ellipsoid  is  astigmatic  and to a degree that  would 
produce  a serious image error. In  an  optical system a  fixed  wavefront  corrector or adaptive 
surface down stream from a  flawed  primary  mirror can correct  the on-axis field of  view for 
a serious wavefront error, such as astigmatism.  The slope asymmetry from Fig. 8 would 
produce  an  astigmatic  image 36.4 mm diameter at mean focus. The  1'Garde data sheets do 
not  indicate  the  orientation  of this membrane, so this  asymmetry  effect is not necessarily 
the  maximum. 

Figs. 7 and 8 raise  two  possibilities. This difference  between  the  two  orthogonal  azimuths 
can be caused by a  difference  between  the  elastic  properties of the  membrane  in  these two 
directions. It also could be caused by a thickness gradient across the  width  of  the  original 
Mylar  membrane as a  result  of  the process. It is clear  that  both  must  be  controlled  better  in 
order to  produce  a  membrane  mirror  suitable for optical  passband  applications. 

Measurements at l'Garde13 found that  Mylar  is  indeed  orthotropic,  the modulus in 
orthogonal  directions  differing by 44%; further, that it varies from  batch to batch. They 
found that  Kapton E is very  close  to isotropic. 

Our re-analysis  showed  a  difference  in  both  the  constant and the  coefficients of u2 and u3; 
namely, 

z = 42.33(0.937~2 + 0.068 u4) for azimuth #1 ,  and (2) 
z = 42.17(0.884 u2 + 0.115 u4) for azimuth #2. (3) 

Note  that  the  edge  value in the  1'Garde  data is at x = 443.5 111111. We have  fitted  this power 
series to x = 400 since  the  effect of higher order terms  becomes  significant as the  periphery 
of  the  membrane is approached. 

The  boundary  conditions for an inflated  membrane  mirror are 1)  that  the  periphery  of the 
mirror is defined by a flat ring  and 2) that  the  central  depth  of  the curve is the same in 
orthogonal  directions regardless of  variation  of E or t  in  these  directions. These conditions 
are illustrated  in Fig. 9. Fig. 9 (left) shows this difference  in curvature, the low E direction 
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being flatter near  the  center and steeper  near  the  periphery. This difference is a form of 
astigmatism  different from that  encountered  in  conventional optics. Fig. 9 (right) .shows 
the contours for equal slopes where the axis switches 90" from the  central to the  peripheral 
regions. Correction for this type of astigmatism  can  not be done by conventional  optical 
elements  in  the system. It can be done with  a  wavefront  corrector at a  pupil  and by having 
the opposite form of astigmatism. 

The observed  ratio  between  the  constant  and  the u2 term for the  orthogonal  azimuths is 
1.064. The relationship of z as a function of u depends  on l/t113E1!3. Assuming that the 
membrane  thickness is constant this would  imply  a  difference  in E of 1.0643 = 1.20. This 
is half  of what  1'Garde has reported for Mylar:  a  reasonable  agmement  inasmuch as the 
azimuth of  the  membrane with respect to fabrication  direction was not  noted  in the data 
supplied to us. No information on possible  thickness  variation  with  azimuth  in  the 6 urn 
membrane was provided. 

To assess the  angular error resulting from this difference  in curve depth vs. radial  zone  we 
calculated slopes between  adjacent  depth  measurements  in  the  1'Garde  data. In Fig. 8 we 
show the  direct + reversed curves of the slopes minus  the  parabolic  term for both  azimuths 
superimposed. The differences in slopes are not as obviously  different from each  other as 
were the  differences  in  the  sagittae as shown in Fig. 6.  In part  this is because  the  plot is 
solely of the  cubic  and  higher slope terms, but  the  slope  differences  between  both  azimuths 
are still  considerable  at 400 mm off-axis: A a  = 0.0088 rad, or 29 arc  minutes. 

4 Variable thickness membrane  mirrors 

The equation for the  central deflection, z, of a  circular  thin  plate  to  that for a thin membrane 
can be written  with  the  equation for the  inverse  central  deflection as the  sum of two 
standard  terms:  the  bending  mode and a  stretching  mode. 

1 1  
1 Et3 E 3t3 

6 Bending  mode  Stretching  mode 

Bending is dominant for a thin plate  but  stretching is dominant for a  thin  membrane. For 
an  example for a  thin  plate  we  take E = 105, t = 10 mm, P = 100 and r = 450 mm, whence 



X 2 d &  

4gTz' 
AT= 

l/z = 4.94 + 0.0062, z = 0.202 mm deflection. 

For a  membrane  mirror  we take E = l@, t = 0.01 mm, P = 0.005 and r = 450 mm, 
whence 

l/z = 9.9e-05 + 0.0170, z = 58.0 mm. (6) 

The large change  in the  u4  term for an inflated  membrane  mirror to attain  a  parabolic shape 
is the  requirement.  One option for achieving this goal is a  membrane of variable thickness 
as advocated by Bre~kinridgel~. 

4.1 Theory 

The shape of a  thin  circular plate of diameter D under  uniform  pressure P is given for 
0 s us1 to terms up to u4  by 

where  t is the  thickness  of  the plate, E the  modulus of elasticity  and  u = 2x/D, the  fractional 
radial  distance from the  center  of  the  membrane. For an inflated  membrane  of  uniform 
thickness k = 0.248. Inserting the expression for  f(u) to terms  up to u4  we  obtain 

1 4  

Z =  0-248p3D3 11 [uu' + (1 -u)u4] 

For the  classical  Hencky  equation a=0.9. The natural shape of an  inflated  membrane has 
higher order terms  than u" because  of an increasingly steeper upward slope near  the 
periphery  of  the mirror. 

Let us define the  variation  of  membrane  thickness  as 

t = f(t,u) = to{ 1 + Au* + B u ~  + C U ~  ...) . (9) 
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l/z = 4.94 + 0.0062, z = 0.202 mm deflection 

For  a  membrane  mirror  we take E = 105, t = 0.01 mm, P = 0.005 and r = 450 mm, 
whence 

l/z = 9.9e-05 + 0.0170, z = 58.0 mm. (6) 

The large  change  in  the  u4  term for an  inflated  membrane  mirror to attain  a  parabolic  shape 
is the  requirement.  One  option for achieving this goal is a  membrane of variable  thickness 
as advocated  by  Breckinridgel4. 

4.1 Theory 

The shape of a  thin  circular  plate of diameter  D  under  uniform  pressure P is given for 
0 s us1 to terms up to u4  by 

where  t is the  thickness of the plate, E the  modulus of elasticity  and  u = 2dD, the  fractional 
radial  distance from the  center of the membrane. For an  inflated  membrane  of  uniform 
thickness k = 0.248. Inserting the expression for f(u) to terms up to u" we  obtain 

1 4  
0.248~3 03 

Z =  " 1 1 [au2 + (1 -a)u4] 
Ft3 

For the  classical  Hencky  equation  a=0.9. The natural shape of an  inflated  membrane has 
higher order terms  than  u4  because of an increasingly  steeper  upward  slope  near the 
periphery  of  the mirror. 

Let us define  the  variation of membrane  thickness as 

t = f(t,u) = t,{l + A u ~  + B~4- t  C U ~  ...) (9) 
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We  found  that  limiting  t to the  Au2  term  results  in  a  parabolic  thickness  variation  of  special 
interest  in  practical  regards.  We  then  have 

whence  the  slope at z is then 

Note that A is independent of P, E, t  and  central  sag z of the  inflated  membrane.  Solving 
for the  value of A such  that  the u3 term  in  Eq. 11  is zero at u = 1 we obtain A = 0.44 for 

1 4  
k p 3  D3 

S t b ( l +  Au’); 
dz ldu= 1 2 [2au + 4(1- a)u3 + 2Aau3] 

the  value of a = 0.9. 

We  can also evaluate A independently from slope data that  include  higher order terms  in  the 
( 1  + A u ~  ) terms  that  we  neglected in Eq. 11.  Note  that  setting A = 0.44 yields  a 
paraboloid.  One  can  select A # 0.44 so that  the  resulting  membrane has a  small u4 term as 
would be required  if  the  membrane  were to serve as a  convex  hyperbolic Cass secondary. 
Likewise it could  be  selected so as to produce the aspheric shape of a  Ritchey-Chretien 
primary mirror. 

The sagitta of the  inflated  membrane, z, is then  the  integral  of Eq. (1 1).  Since  there is no 
closed form for this integral it is necessary to evaluate it by  numerical  integration, 

z = Z (dzldui + ddduj)A/2. 

4.2 Example 

As an  example  let us take  the  case  of  a  classical  Hencky  surface and a 6 pm membrane 
which  under  unspecified P and  E  had  the following parameters: 

dzldx = 0.2375 ( 1 . 8 ~  + 0 . 4 ~ 3 ) .  (13) 
The results for the  parameters for membranes  of  constant  and  variable  thickness  are shown 
in  Table 1. The curve depths are from a  numerical  integration of  the  above equations  and 
hence are only  approximate  in  view  of an integration step of 40 mm. The optimum  value of 
A was determined  by  integrations of Q (12) to  be 0.42. 
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4.3 Wavefront correction at a pupil 

Upgrading of a  wavefront error that  would otherwise limit  system  acuity is done by  placing 
a  wavefront  corrector at a pupil''. The degree of correction  that  can be  attained over a 
required  field of view depends on the  pupil minifcation factor, Q, which then sets the  size 
of pupil  that  can  manage  a  given  wavefront  aberration 12. The approximate  equation for 
the  improvement factor possible at the  wavefront  correcting  mirror is 

where 81 is the  angle of incidence on the  primary mirror, 82 the angle of incidence  on  the 
pupil mirror, + the  field  angle and Q the  pupil demagnifkation factor. 

Table 2 shows the  allowable input wavefront error for correction to an 0.1 pm output error 
for a  typical &mirror CasdCass having  an F/1 first stage  and F/10 final focal ratio. The 
wavefront  correction is applied at the  quaternary for different  pupil  reduction factors, Q. 

Table 2 Allowable  input wavefront errors in urn for an 0.1 pm output error 12 

Wavefront  correction  pupil  reduction factor, Q 
5 10 3.0 X) 100 

FOV  amin 
6' 1981 1654 943 233 63 

12' 922 661 299 61 15 
18' 574 366 145 27 6 
3 0' 305 164 56 9 - 
60' 118 50 14 - - 

From Table 2 we  see  that  achieving  a  wavefront error reduction of 200 would  permit 
upgrading  a  field  of  view of 6 amin at  a  pupil  reduction factor of 5 0 ,  e.g., a 10 cm  pupil 
mirror for a 5 meter  telescope.  Correcting  a 30 amin  field  of  view on the  other  hand  would 
require  a 62.5 cm pupil  mirror. The relationship  between  field of  view and improvement 
factor for any  value of Q is shown in Fig. 12. 
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5 Gores and pre-shaped membranes 

There are two  basic options for pre-shaping a membrane: 1) form  a  parabolic  membrane by 
spin casting  a  polymer as discussed by Borra15 or 2) make  the  membrane  mirror from 
discrete  pie-shaped gores. Making  the  membrane mirror from  discrete  pie-shaped gores 
offers an approach to make mirrors larger than  can be made from a  single sheet of 
polymeric  material. Both provide  a  way to avoid  the loss of  reflectivity  and  increased 
scattering from the  stretching  of  the  aluminum or silver  reflective surface. Such a mirror is 
fabricated by placing  the  appropriately  edge-contoured gores on a  convex surface and 
sealing  adjacent panels by means of adhesive tape strips. The problem  then is one of 
matching  the  inflation  characteristics of  the membrane and the  membrane plus adhesive 
strips. The dependence  of  deflection  on t1’3  in Eq. 7, while mild, still shows a  basic 
difficulty of the gore approach in equalizing  the  deflections of the  membrane  and of  the 
membrane  plus  connecting strips. Much  work  has  been done to solve the  inflated shape 
problems  caused by  the  added  thickness at the  sealing strips. The results are satisfactory  at 
microwave  wavelengths  but far from acceptable  even at thermal i n f m d  wavelengths. 

5.1 Convex mold 

One  option  to  pre-shape  a  monolithic  membrane is to  permanently deform a  membrane by 
some  appropriate  means over a  convex  parabolic  mold. The resulting  parabolic  membrane 
can  now  be  inflated to the  desired  final  focal  length  at  a pressure considerably  reduced over 
that  required  to  deform  a flat membrane to the  same focal length. Even so, the  paraboloid 
will be deformed by a Hencky term, but one that is accordingly  smaller. To correct for this 
small  Hencky  term  the  mold  must be modified so that  this  induced  Hencky  term is 
subtracted fmm the master. While this procedure  could  make  a  pre-shaped  membrane  that 
exactly  compensates for the  Hencky shape it poses  a  problem of how to  attain  the  high 
degree  of  precision  necessary  that  the  inflated  shape  will be exactly as required. There is, 
however, a different solution that has natural  properties  that  will  tend to assure the  required 
precision. 

6 Fabrication of a variable thickness membrane 
Fabrication is a  key step in forming a  membrane having a  monotonically  varying  radial 
thickness  gradient. Forming a  uniform film by pouring  a  polymer onto a  rotating flat plate 
has been done. One can modify  the process to form a  non-uniform  membrane.  We  have 
shown above  that  the  ideal  radial  variation in membrane  thickness is parabolic. The process 
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for manufacturing such a  parabolic thickness membrane to the desired high  precision is to 
use a  rotating  table or mold. 

There are two options for such a  membrane: 1) a flat membrane  having the required 
parabolic  radial thickness gradient  and 2) a  parabolic  pre-shaped  membrane having the 
required  parabolic  radial thickness gradient.  Both  can be fabricated by  relatively  simple 
means. 

6.1 Flutmembrm 

The equation  given by Borral6 for the  rotation  period T of a disc having  a  focal length f 
(independent of diameter D) of a liquid surface on a  rotating  table is 

8n2 f p = -  8 

g 
Substituting f = P /16 z we  obtain 

where the radial  variation in thickness is given by 

z = to (1+ A u ~ )  . 

For  a  1-meter  diameter  table  and = 0.01 cm and t = 0.0143 at u = 1, T = 59.3 sec/ 
revolution.  If  one  were to make a 20 meter diameter  parabolic  reflector for far infrared, for 
example, the rotation  period for a  membrane of thickness = 0.10 cm the  rotation period 
would  be T = 377 sec/rev. 

Fig. 13 shows two options for forming a  flat  membrane  having a parabolic  radial  thickness 
variation  required  to  yield a paraboloid  upon  inflation. The first option (top) is to use a 
rotating table. A circular flat sheet of glass or other  suitable  material  can be used for this 
table. A dike is placed at the  periphery of  the  mold to contain  the liquid polymer. The table 
is then  rotated at an angular  velocity such that  the  edge  thickness at the  planned  diameter of 
the  membrane (at u = 1 .O) is 1.42  times  the  central thickness of  the spun liquid as specified 
by Eqs. (15-17). The polymer is then  polymerized  while  the  table continues to spin. 
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An  important  advantage  of  using  a  polished  master  surface is that  the  optical  surface  of  the 
finished  membrane  replicates  the  polished surface of the  master. The free surface of  the 
polymerized  polymer  on  the  other  hand  can  have  small  surface  irregularities  that  would 
affect  the  specularity of  the  finished  membrane. 

The second  option (Fig. 13, bottom) is to use  a fixed table  and  a  slightly  convex  spherical 
master. The spherical  curve  produces  the  quadratic  radial  variation  in thickness. This 
option  would  be  preferred  when  one  wants to make  a  number of identical  flat  membranes. 
The sag, s ,  of  the master is given  by 

s = h2/2R. Solving for R we obtain R = h2/2s. ( 18) 

For  a 100 urn central  thickness  membrane  and a 1 meter  diameter  substrate  the  radius of 
curvature  would  be 880 meters. 

6.2 Curved membrane 

In  view  of  the  desirability  to  preserve  the  integrity  of  the  reflective  film  deposited  on  the 
finished  membrane  one  would like to reduce  the  amount of surface  stretching  to  a 
minimum. This can  be  done by pre-shaping  the  membrane to a shape close to that  required 
of  the  inflated  mirror. The procedure is to form the  mold  by  spin casting, upon  which  the 
membrane  polymer is to be formed by spin casting at an  angular  velocity such that  the 
required  power  of  the  membrane is obtained.  One  can  use  a  polymer as reported  by 
Borral5. Another  option is to  use glass, for example, as developed  by  Angel17. A third 
option is to use  a  low  temperature  metal.  A fourth is to use  a  polymer atop a  spin-set  plaster 
substrate. In each case the  membrane  polymer  needs to be  separated from the  mold by use 
of a  suitable  parting  layer  to  ease  removal of  the  membrane  without  damage. 

The prior art has been to use spin casting to produce  a  uniform  membrane. We add  the 
additional  requirement  that it be spun at a  slightly  different  velocity from that  used to form 
the mold, the  goal  being to obtain a  specific  variation in radial  thickness  profile so that  the 
inflated  mirror is an accurate  paraboloid. 

The rotation  period  T  of  a  liquid  surface  having  a  sagitta  of  depth  z on a  rotating  table is 
given  by Eq (16). We first form the  mold surface, then  add  the  liquid  polymer. To change 
the  edge  thickness of  the  rotating  parabolic  surface by  z+Az  we  need to change  the  rotation 
period  by 
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As an example, for a 100 cm diameter F/1.1 membrane of central  thickness 0.01 cm  we  have 
for the  mold  paraboloid 

T = (x2 110 cm + 980 cm/sec2)1’2 = 2.9770 sed rev. (20) 

To form a  parabolic  liquid  surface of additional  edge  thickness  of 0.0143 cm on this mold 
we  need  to  change  the  angular  velocity by AT seconds: 

AT = 0.0037 second, thus (T -t- AT ) = 2.9807 seclrev. (21) 

This small  difference  in  rotation  period  emphasizes  that  attaining  the  required  precision of 
rotation  period  may  be  a  challenge. 

In Fig. 14 (top) we  illustrate  the  formation  of  a  parabolic  shaped  membrane  having  a 
parabolic  radial  thickness  gradient. The polymer is poured into the  pre-fabricated  mold 
paraboloid  and spun at  the  slightly  different  angular  velocity, as specified by Eq. (19), 
such  that  the  edge  thickness of  the  membrane is 1.42 times  the  central  thickness at the 
periphery  of  the  finished mirror, namely at u = 1 .OO, Note  that u = 1 is not  necessarily  the 
same as the  outer  diameter of the  inflated  mirror for the reasons we have  already  stated. 

Fig. 14 (bottom) shows the  resulting  parabolic  membrane  before  and  after  inflation to the 
required  focal  ratio. The membrane  mirror  will  attain  a  different  central  depth  depending  on 
the  applied pressure. This pressure now has a  different  role from that  with  a  flat 
membrane: it  is the  minimum  necessary  to  smooth  out  the surface, not to form the shape of 
the  membrane as in  the  case  of  a flat membrane. 

The following example is for a  small  change  in  sagitta depth, from F/l.l to F/1.0 and 
where P is the pressure to  inflate  a flat membrane  from f = 100 cm  to  f = 110 cm: 

~0 =D2/16f = 5.6818cm. (22) 

The depth to change it from F/1.1 to F/l.O is 

z1 = 6.2500 cm, 

From  the  relationship  between  sagitta  and  inflation  pressure  in Eq (12) the  ratio of 
pressures is then 



P1 = Po (21 / q) )3. 

Thus the pressure would  be changed to 

This  shows that  a  small  change in final focal ratio requires a  substantial pressure increment. 
One  would  therefore look for the  smallest pressure change sufficient  to smooth out the 
wrinkles in the  membrane  in  transitioning from the folded stowed package to an  operational 
mirror. Note, however, that  the  value of A = 0.42 for the thickness variation is unchanged 
since it is independent  of pressure according to Eq. 1 1. 

7 Practical aspects 

One  of  several configurations of  an  inflatable  optical system spacecraft  that we have 
explored is shown in Fig. 15. The optical  cavity is formed by a cylinder of inflated rings 
which  position  the  secondary mirror and also provide  a  thermal shield. The planes of both 
the  primary  mirror  and  of  the  small secondary mirror are defined by  the interface  between 
two  adjacent  inflated rings.  The carbon fiber metrology truss between  the  primary  mirror 
and  the  secondary  mirror  to define and maintain focus and collimation is also shown. 

The potential for a  compact  launch  package shows the reason why  continuation  of work in 
inflatable  optical systems is justified, the  practical problems not withstanding. There are, 
however, a  number of  practical considerations that must be faced  in successfully applying 
inflated  membrane mirrors in  the 0.5- 12 um region. Here are some significant ones. 

7 .1  Lifetime on orbit 

If inflation pressure must be maintained  in order to keep the  optical surfaces pristine a few 
micro  punctures from meteoroid  impacts  become  a concern. One  would  require  a  reserve 
of pressurized gas or a  sublimable solid that  could  maintain  a  suitable pressure. This 
requirement  emphasizes  that  the lowest operating pressure is a priority, hence  the  choice  of 
a  pre-shaped  membrane as discussed above. Alternately one could risk an unpredictable 
lifetime  in  exchange for a  very low-cost readily  replacable spacecraft. The equations and  a 
detailed discussion of issues relating  to  the  influence  of  micrometeorites  have  been  given 

by  Rap$. 



7.2 Focus and collimation 

Maintenance of focus and  collimation in-an inflatable  optical system is a  challenging issue, 
in particular  the effect of small changes in pressure affecting focus. Breckinridgel" has 
suggested using carbon fibers to provide  the  basic truss defining the relative positions of 
the  optical  elements and focal plane as a  way to avoid this sensitivity to pressure as well as 
thermal  gradients in the  inflatable envelope. 

7 . 3  Penpheral tensioning 

A  word  of  caution: as  far as we  can  determine  all  measurements  of  inflated  membrane 
mirrors have  been done using a single surface and deforming it by reducing the pressure in 
the  .unit  holding  the  membrane fixed to the periphery  of  a flat, very  rigid  metal ring. For 
space  applications such a  heavy  defining ring cannot be used. For such applications an 
inflatable  mirror consisting of the two surfaces joined at their  periphery requires an inflated 
tensioning  ring plus a tensioning web. Without  a  tensioning ring the  periphery of  the 
inflated  mirror  will  contract  until  a  new  equilibrium is established, one with an accentuated 
turned-up periphery. An  aluminum  membrane  party  balloon illustrates the  tendency of  an 
inflated  mirror  to develop a sharply turned up periphery, the  angle  between  the two sheets 
at the junction tending towards 180". 

Problems arise  in  attaching  the mirror to an  inflated  stiffening ring. For microwave 
antennae  a  network of rope stays is often used to  knit  the  mirror to the  ring at a number of 
closely  spaced  but  discrete locations. These points of attachment produce localized surface 
errors that  are large compared to visible wavelengths. Attaching  the  mirror to the  inflated 
stiffening  ring by means of a continuous sheet has its problems also. The seal between the 
two  membranes  of  the mirror must  be  accurately  circular  and  the  inflated  tensioning  ring 
highly planar, both  of which are very  real  challenges. 

7.4  Departure from the Hencky surface 

In  view  of  the above issues the  equation for the Hencky surface found  for the  membrane 
mirror in the  example  above  may  be  considerably different. In fact the coefficients  of  the 
traditional  Hencky  equation (Eqs. 7 and 8) a = 0.9, (a -1) = 0.1 depend on the outer 
boundary, u, of the  mirror  relative  to  the  physical  boundary  of the inflated membrane. 
This is because the upturned edge increases in  severity as the  physical boundary is 
approached, requiring signifcant us and u* terms. Thus the  value  of  A = 0.42 in Eq. 10 
applies only to a surface described by a = 0.9. For any real membrane one must first 



determine  the  applicable  coefficient a, which  depends  on  the  focal  ratio  of  the mirror, the 
membrane  thickness  and  the  outer  useful  diameter of the  inflated mirror. 

In addition to these  departures one faces localized  variations  in modulus of  elasticity  that 
become  readily  apparent  when  one observes a  sightly  out of focus image  of  a  point source. 
It therefore may  be  necessary to correct for these  in  making  the  wavefront  corrector  that 
would  be  placed at a  minified  pupil  within  the  optical  configuration. 

7.5  Reflective coating 

Another serious issue is that  when  an  aluminized  sheet is stretched  the  reflective  coating 
beaks  up into islands with  clear  gaps  in  between.  Rapp18  cites  work at ILC, Dover, Inc., 
that shows that  due to the  nature  of  the  aluminized  coating  on  the  Kapton  film  an  elongation 
"greater  than 5% the  aluminum  coating  would  disseminate"  leading  to  transmission  of  light 
through  the  reflective surface. We  encountered  this  problem  years ago when  we  shaped 
concave solar concentrator mirrors out of flat sheet  material  that  had  been  aluminized.  The 
reflectivity  decreased  and  the  scattered  light  sharply increased. In  the  example  membrane 
mirror above, the  stretch of the  inflated  membrane  increases its surface  area by 10.4%. 
This indicates  that  the  reflectance  would be decreased by this same  amount  assuming  that 
the  reflective  film  prefers  to  fracture  rather  than stretch. The solution  to  this  problem is to 
use  a  pre-shaped  membrane so that  the  amount  of  stretching is minimized. 

7.6 Optical window  membranes 

An  inflatable  membrane  mirror  requires  a  window  that is optically  satisfactory  and 
transparent  to  the passbands to be used.  A  number of investigators  have  examined 
transparent  membranes for suitability for the  optical  window of an  inflatable  membrane 
mirror. All  have found optical  path errors that  make  their use doubtful for a  diffraction- 
limited system. The effects  range from optical  path  small-scale  effects  like  discrete 
striations  to  large-scale  thickness  variations.  The  large-scale effects can  in  principle  be 
taken out by the  wavefront  corrector  mirror. 

7 .7 Removal from a  parabolic  mold 

The major  practical issue is how to remove the polymerized  membrane from the  mold 
surface, especially  a deep parabolic  mold.  Adhesion poses a  difficulty  since  removal 
requires  that an air  film  creep  in  between  the  membrane  and  the mold. Applied  removal 
forces must  be  kept  low so that  a  permanent  deformation  of  the  membrane is avoided. 



One  option for how to solve this problem is to form the upper layer  of  the  parabolic  mold 
from a  material  with  a low melting  point  but  which remains solid at the  temperatures 
involved  in  polymerizing. An example is  Wood's metal,  which has a  melting  point  under 
the  boiling  point of water. Then removal  of  the  membrane  would  involve  simply  heating 
the  mold to 100°C whereupon the liquid  metal  would  float  the finished membrane. 

Another  option  would  be to place  a passage for air  at  the  center of  the mold.  After finishing 
the  membrane  air pressure could be  used to gently  lift it free of  the mold, starting  at  the 
center and propagating outward. 

8 Conclusions 

A number of conclusions can be drawn from this analysis. 

1) Deliberate  variation of the  radial  thickness  can  create  a  membrane  that  will be an  accurate 
paraboloid  upon  inflation. A value of A = 0.42 is found for the  au2  thickness  profile  term 
independent of thickness or inflation pressure. 

2)  Selection of a  slightly  different  value for A can  yield  the  specific  hyperbolic shape as 
required for a  convex Cassegrain secondary or a  Ritchey-Chretien  primary mirror. 

3 )  The  required  membrane  having  a  radial  parabolic  variation  in  thickness can be produced 
either by spin casting  on  a  flat surface or spin casting on a  pre-formed  parabolic  mold. 

4) Commercial  Mylar  of 1983 vintage  has  enough  variation  of  physical  properties  with 
azimuth  that  an  inflated 6 um thick  Mylar  membrane  mirror  will  have  astigmatic  behavior of 
such a  magnitude  that it is doubtful if it can be used  in  a  high-acuity  optical  passband 
system. Other polymers, like Kapton, may  alleviate  this  problem. 

5)  Practical  application  of  inflatable  membrane  mirrors has significant issues that  must  be 
faced  and solved. The potential  advantage  of  low cost large  aperture  space  telescopes for 
use  in  the 0.5 to 12 pm region hangs in the balance. 
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FIGURE CAPTIONS 

Fig. 1 The caustic  formed by the membrane mirror analyzed in this paper. A secondary 
mirror  must be located  sufficiently far from the start of  the caustic in order  to handle the 
aberrations of a Cassegrain system. 

Fig. 2 TWO examples of measurements of inflated  membrane mirrors showing an 
asymmetrical  W-curve . 
Fig. 3 The tabulated data minus a  paraboloid  (smooth curve) and as corrected for 
metrology  coordinate  alignment coma (curve  with  dots). 

Fig. 4 Data for the 6 um Mylar membrane mirror, the sagitta (top) and  the difference 
with  respect to a  paraboloid (bottom). 

Fig. 5 Slopes  measured  along an azimuth (top) and  after subtraction of  the parabolic 
slope (bottom) with  the  cut  reversed  and  superimposed to permit full correction for the 
metrology  zero  point. 

Fig. 6 The mean curve from Fig. 3 reversed and superimposed (top) with the difference 
showing a 3.5 pm rms (bottom), close to  the difference of one in the last place of the 
original  measurement  data. 

Fig. 7 Comparison of  the residuals after subtraction of  the  Same parabolic curve from 
both  azimuths  shows  that  there is a  significant difference in the  modulus of elasticity in 
these  orthogonal  directions. 

Fig. 8 The direct and  reversed curves for both azimuths superimposed showing a  spread 
of curves at  large  radial  zones. 

Fig. 9 Schematic  representation  of  the  type of astigmatism caused by a  variation  of  the 
membrane  value  of E (or thickness t)  in  orthogonal  directions showing a 90" change in  the 
major axis between  the  inner  and outer regions of the mirror  surface. 

Fig. 10. Variation  of  the  membrane slopes vs. zonal radius, r,  for a  uniformly  thick 
membrane  (large  circles)  and  a  variable  thickness  membrane (small circles)  with  a  linear 
(parabolic)  relationship shows the  ability to control  the surface figure by increasing the 
membrane  thickness  with  increasing  radial distance. 



Fig. 11 The residual  between  the  variable  thickness  membrane  and  the  straight line 
relationship of  Fig. 10 showing that a  moderate dependence on thickness on u4 and u6 is 
present. 

Fig. 12 The inter-relationship  between field of  view and required  improvement 
factor defines the  required  pupil demapfkation factor Q. 

Fig. 13 Two fabrication  modes: 1) a flat table carrying a flat sheet of glass is spun so that 
the edge thickness of the  liquid polymer is that  required  to  produce  the  edge thickness as 
illustrated  above and 2) a  convex  spherical  polished  master  on  which  the  liquid polymer is 
poured. 

Fig. 14 The sequence shows the  fabrication  mode for forming a  membrane having a 
parabolic  radial  variation  in thickness (top). The added curve depth after inflation produces 
the  required  focal  ratio  of  the mirror (bottom). 

Fig. 15 Schematic cross-section of  an  inflatable  space  telescope using inflated rings plus 
metrology fibers to locate  the  position  of  the  secondary mirror, showing the  compactness 
that is possible  using  an  inflated  membrane  mirror  and  associated structure. 

Fig. 16 The  arrangement for laboratory  measurements (top) and space applications 
(bottom) is different. In order to predict  on-orbit performance, analyses based on 
laboratory  measurements  will  require  appropriate  modifications. 

TABLE CAPTIONS 

Table 1 Parameters for membranes of constant  and  variable thickness. 

Table 2 Allowable  input  wavefront errors in  um for an 0.1 pm output error l 2 .  
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